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ABSTRACT

We show that the virtual Betti number of a compact locally symmetric

space with arithmetic fundamental group is either the Betti number of the

compact dual or else is infinite.

1. Introduction

Let G be a connected non-compact linear Lie group with finite centre, such that

G is simple modulo its centre. Let Γ be a torsion free cocompact arithmetic

(not necessarily congruence) subgroup in G. Recall that Γ is said to be an

arithmetic subgroup of G, if there is a semi-simple (simply connected) algebraic

group G defined over Q and a smooth surjective homomorphism π : G(R) → G

with compact kernel such that π(G(Z)) is commensurable to Γ.

Let i ≥ 0 be an integer. Consider the direct limit cohomology group

Hi = lim Hi(∆, C)

where the direct limit is over all finite index subgroups ∆ in Γ; we emphasize

that Γ is only assumed to be an arithmetic subgroup of G and is not assumed

to be a congruence subgroup of G. The dimension of the direct limit Hi as a

C-vector space is called the virtual i-th Betti number of Γ.
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Theorem 1: If the direct limit Hi is finite dimensional, then Hi =Hi(Gu/K, C)

where Gu/K is the compact dual of the symmetric space G/K of G.

As a special case we recover the following result of Cooper, Long and Reid

(see [CLR]).

Corollary 1: If M is a compact arithmetic hyperbolic 3-manifold with non-

vanishing first Betti number, then M has infinite virtual first Betti number.

Proof. Take G = SL2(C) in Theorem 1, and observe that the compact dual

Gu/K = S3 has vanishing first cohomology.

The present note was motivated by the recent preprint [CLR] of Cooper, Long

and Reid, where they prove Corollary 1 in a nice geometric context, by using

crucially the fact that M is a hyperbolic 3-manifold. We show in Theorem 1

that the infiniteness of virtual Betti number is true in greater generality. The

point of Theorem 1 is that the group Γ is not assumed to be a congruence

subgroup; if Γ is a congruence subgroup, this is a result of A. Borel (see [B]).

2. Proof of Theorem 1

Let K ⊂ G be a maximal compact subgroup; write k and g for the complexified

Lie algebras of K and G. We have the Cartan decomposition g = k ⊕ p. Note

that Γ (and hence the finite index subgroup ∆) is torsion-free and cocompact

in G. We then get by the Matsushima–Kuga formula (see Chap. VII, Corollary

(3.3) and Remark (3.5) (i) of [BoW] and also Chap. II, (3.4) of [BoW]),

Hi(∆, C) = HomK

( i
∧

p, C∞(∆\G)(0)

)

.

In this formula, C∞(∆\G)(0) denotes the space of complex valued smooth func-

tions on the manifold ∆\G which are annihilated by the Casimir of g (the latter

space in the Matsushima–Kuga formula may be identified with the space of har-

monic differential forms of degree i on ∆\G/K with respect to the G-invariant

metric on the symmetric space G/K).

Taking direct limits in the Matsushima–Kuga formula yields the equality

Hi = lim Hi(∆, C) = HomK

( i
∧

p,
⋃

∆⊂Γ

C∞(∆\G)(0)

)

.
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Here, ∆ runs through finite index subgroups of Γ. Consider the space

F =
⋃

∆⊂Γ

C∞(∆\G)(0).

On the space F (the space of smooth functions on G annihilated by the Casimir

and invariant under some finite index subgroup ∆ for varying ∆), G acts on

the right (since the Casimir commutes with the G-action).

Now, Γ is an arithmetic subgroup of G. As in the introduction, there exists an

algebraic group G defined over Q with a smooth surjective homomorphism π :

G(R) → G such that the image π(G(Z) is commensurate to Γ. We define G(Q)

simply to mean the image group π(G(Q)). It follows from weak approximation

([PR]) that G(Q) is dense in G.

Now, there is an action on F by G(Q) on the left (which, therefore, commutes

with the right G action), as follows. Given a function φ ∈ F and given an

element g ∈ G(Q), the function φ is left ∆-invariant for some finite index

subgroup ∆ in Γ. Consider the function g(φ) = x 7→ φ(g−1x). This function

is left-invariant under g∆g−1 and hence under Γ ∩ g∆g−1; since g ∈ G(Q), it

follows that g commensurates Γ and hence that the subgroup Γ ∩ g∆g−1 is of

finite index in Γ. Therefore, g(φ) lies in F . This defines an action of G(Q)

on the direct limit Hi. Note that under this action, the action of ∆ on the

cohomology group Hi(∆, C) is trivial.

Suppose that Hi is finite dimensional. Since Hi is a direct limit of finite di-

mensional vector spaces, it follows that it coincides with one of them. Therefore,

there exists a finite index subgroup ∆ of Γ such that

Hi = Hi(∆, C).

The last sentence of the foregoing paragraph says that while G(Q) acts on

Hi(∆, C), the action by ∆ is trivial. Hence the action by the normal subgroup

N generated by ∆ in G(Q) is also trivial. The density of G(Q) in G is easily

seen to imply the density of the normal subgroup N in G. Thus, the image of
∧i

p under any element of Hi (viewed via the Matsushima-Kuga formula as a

(K-equivariant) homomorphism of
∧i

p into F), goes into (N -invariant, and by

the density of N in G, into) G invariant functions in C∞(∆\G), i,e, the constant

functions. But HomK(
∧i

p, C) is the space of harmonic differential forms on

the compact dual Gu/K, and is therefore isomorphic to Hi(Gu/K, C).

This proves Theorem 1.
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Remark: If Γ and all the subgroups ∆ are congruence subgroups, then one

sees at once from strong approximation, that the above G(Q) action on the

direct limit translates into the action of the “Hecke Operators” G(Af ) (Af are

the ring of finite adeles) and amounts to the proof of Borel in [B]. In this sense,

the proof of Theorem 1 is an extension of Borel’s proof to the non-congruence

case.
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